BUILDING A WORLD OF DIFFERENCE

WATER RESOURCES FACILITIES PLAN – WORKSHOP #3

VALLECITOS WATER DISTRICT

AGENDA

- Setting the stage
- Water resource options update
- Local supply options
- Where can we use recycled water
- Findings and recommendations

SETTING THE STAGE

- Where are we
- Scope of this study

WHERE ARE WE?

- Reuse effort put on hold to focus on drought response
- Meanwhile ...
 - Water resource options updated
 - Reuse conditions updated
- Todays presentation
 - Review water resource options
 - Review refined reuse opportunities
 - Recommendations on reuse opportunities

SCOPE OF THIS STUDY

- Goal of Study
 - Not to necessarily define what to do...
 - But to identify next steps to investigate in more detail
- Objectives for today:
 - Review findings
 - Identify top 3 conceptual opportunities

WATER RESOURCE OPTIONS UPDATE

PREVIOUS VWD INTEGRATED WATER RESOURCES PLAN

Completed

- ✓ Increased irrigation efficiency
- √ Connection to Olivenhain WTP
- ✓ Desalination supply

PREVIOUS VWD INTEGRATED WATER RESOURCES PLAN

Other Options Considered

- Groundwater Banking
 - Requires partnership outside region
- Escondido/VID Transfer (Purchase)
 - Potential for potable reuse
- Oceanside Weese WTP
 - Not a new supply
- Recycled water from Escondido
 - Not available in summer
- Twin Oaks Valley Recycled Water
 - Deemed too costly in previous study

These options have same/more challenges as previous study

PREVIOUS VWD INTEGRATED WATER RESOURCES PLAN

Additional Seawater Desalination

- Option available in 2025
- Increase from 3,500 (2,170 gpm)
- Assume OMWD Supply: 1,708 gpm
- VWD in 2025:
 - Min. demand in South/Central Areas: 5,748 gpm
 - → Could take up to 1,870 gpm in additional desal. supply
 - Potential to take more:
 - Pump (new) to North area
 - Reduce OMWD take in winter

WATER RESOURCE OPTIONS

- Water supply options covered
 - √ Groundwater banking
 - ✓ Other agency partnerships
 - ✓ Desalination
 - Recycled Water

WHAT ARE THE LOCAL WATER SUPPLY OPTIONS?

- Wastewater
- Stormwater
- Dry Weather Runoff

WASTEWATER/ RECYCLED WATER SOURCES

VALLECITOS RECYCLED WATER SOURCES

Overview

- Meadowlark WRF (5 MGD -> 6.5 MGD)
- Wholesaling 5 MGD to Carlsbad/OMWD

Benefits

- Control supplies
- Potential to reduce downstream treatment
- Long-term: more flows

- Limited WW availability
- Capacity limited at MWRF
- Treatment/ocean disposal still needed via Encina WPCF

ESCONDIDO RECYCLED WATER SOURCES

Overview

- 2008 Master Plan: 477 AFY
- North San Diego Water Reuse Coalition Project:
 922 AFY

Benefits

- Regional partnership provides
 - Economy of scale
 - Facility optimization (esp. storage)

- Escondido has moved forward with New Programmatic Plan
- Uncertain what is available in peak summer season

ENCINA WPCF RECYCLED WATER SOURCE

Overview

- Currently studying regional reuse
- Capacity equals
 VWD wastewater

Benefits

- Regional collaboration
- Timing may be right for DPR

- Long distances for transmission piping
- Lift and energy for pumping

STORMWATER

AND

DRY WEATHER RUNOFF

STORMWATER CAPTURE

Overview

- Requires infrastructure to capture stormflows
- Utilize storage facilities

Benefits

- Dilution for indirect potable reuse
- Supplemental source for non-potable reuse
- May offer water quality benefits (TDS)

- Requires significant storage volumes and diversions
- Water rights would need to be assessed
- Little yield in dry years

STORMWATER CAPTURE: SOUTH LAKE

Overview

- 75 MG (230 AF) capacity
- 200 acre watershed with 15 in/year average rainfall less 60% losses yields 100 AFY *

Benefits

- Recreational opportunities
- NPR opportunities

- Diverts water away from Lake San Marcos
- Future park may restrict potential use

STORMWATER CAPTURE: LAKE SAN MARCOS

Overview

 ~160 to 230 MG (~400 to 700 AF) capacity

Benefits

- Manage water quality
- Potential NPR opportunities

- Requires jurisdictional arrangements
- Private ownership
- Need to address existing water quality challenges (currently in litigation)
- Requires regulatory approvals and institutional/operational changes

DRY WEATHER RUNOFF

OVERVIEW

- Divert to sewer to supplement recycled water supplies
- Divert to direct irrigation (parks, golf courses, etc.)

Condition	Flow Generation (gpd/acre)	Potential Yield for VWD from 9,000 Acres of urban watershed* (MGD)
Pre-Conservation	320	2.9
With Conservation	190	1.7
Soft Bottom	0-190	0 to 1.7 (Varies by reach of creek)

^{*} Watershed area derived from Upper San Marcos Creek Nutrient Management Plan, 2010. Assumes ~50% of entire watershed is urbanized.

DRY WEATHER RUNOFF

BENEFITS

- Cost effective when diversion located near sewer or users
- Water quality enhancement in streams
- Partner with City

CHALLENGES

- Water rights
- Regulatory
- Conservation likely to reduce flows over time
- Treatment plant modifications

Low Flow Diversions

WHERE CAN WE USE RECYCLED WATER?

- Non-potable reuse
- Potable reuse

NON-POTABLE REUSE

NON-POTABLE REUSE: NEW WRF

Overview

- Twin Oaks Valley Recycled Water Plant (2007 IRP Study)
- Annual Demand: 727 AFY

Benefits

- Development funded
- Expandable with growth

- Deemed costly
- No existing infrastructure
- Lacks economy of scale

NON-POTABLE REUSE: MEADOWLARK WRF-LOCAL USERS

Overview

- Serve largest local irrigation users (3)
- Annual demand: 215 AFY

Benefits

- Short-term opportunity
- Expandable in future

- Wastewater supplies limited currently
- User/city agreement

NON-POTABLE REUSE: MEADOWLARK WRF-ALL USERS

Overview

- Serve all users
- Annual demand: 1,000 AFY for larger users (20+ AFY)

Benefits

- Expandable as supply is available
- Development could provide funding/infrastructure

<u>Challenges</u>

- Wastewater supplies limited currently
- User/city agreement
- Expensive due to distance

POTABLE REUSE TREATMENT

INDIRECT POTABLE REUSE PROCESS: TYPICAL

INDIRECT POTABLE REUSE PROCESS: SURFACE WATER AUGMENTATION (SMALL RESERVOIR)

POTABLE REUSE:

GROUNDWATER RECHARGE

GROUNDWATER RECHARGE: GROUNDWATER BASIN (SMAGB)

OVERVIEW

 Current beneficial use is NPR irrigation at specific sites

• NPR Option:

 Increase recharge to improve reliability of existing irrigation wells

Potable Reuse Option:

 Requires recharge and extraction facilities

INDIRECT POTABLE REUSE OPTION: GROUNDWATER RECHARGE

Overview

- New Advance Wastewater
 Treatment Plant at MWRF
- 3 MGD (3,360 AFY)
- Brine-concentrate to Encina WPCF

GROUNDWATER RECHARGE: SMAGB

BENEFITS

- Diversified water supply (potable or NPR supplies)
- May improve water quality in long-term

CHALLENGES

- Water rights could be a challenge
- Uncertainty in basin yield (may be much lower than 3 MGD)
- Decomposed and fractured bedrock => loss of water
- Siting for recharge and extraction facilities
- Potable reuse would require source of blend water
- High cost just to evaluate
- Requires land purchase for recharge

POTABLE REUSE:

SURFACE WATER AUGMENTATION

SURFACE WATER AUGMENTATION

Overview

- Proposed SWA regulations will be available for public comment in Q1 2017.
- Need reasonably large reservoir to meet regulations
- Smaller reservoirs likely to require additional treatment (Ozone-BAC)

Benefits

- Year-round utilization of recycled water
- Diversified potable water supply

SURFACE WATER AUGMENTATION OPTIONS

Challenges

- South Lake
 - Very small
 - No existing WTP
- Lake San Marcos
 - Small
 - No existing WTP
 - No ownership

Escondido

- Program in progress
- Distance to North Escondido

Olivenhain

- Other agency's facility/public
- Long distance and elevation gain to VWD

SURFACE WATER AUGMENTATION: SOUTH LAKE

Overview

- New AWT and WTP
- 165 AFY (0.15 MGD)

Benefits

- Potable water supply
- VWD facilities
- Enhance South Lake

Challenges

- Regulatory
- Public acceptance/dual use
- Blending water source needed
- Major facility needs
- Economy of scale

DIRECT POTABLE REUSE

STATUS ON DIRECT POTABLE REUSE

- Could be viable if State develops regulations (10+ years)
- Current regulations situation:
 - Expert Panel Draft Key Research Recommendations (Issued: June 30, 2016)
 - Draft DPR Feasibility Report for Public Review (Issued: Sep 1, 2016) 45 day comment period
 - Final Feasibility Report (SB 918)
 - Due to Legislature (Dec 31, 2016)
 - SWRCB to <u>evaluate the feasibility</u> to develop criteria for DPR

DIRECT POTABLE REUSE OPTION: NEW AWT

Overview

- New Advance Wastewater
 Treatment Plant at MWRF
- 1.2 to 5.2 MGD Available (1,300 AFY to 5,800 AFY)
- Brine-concentrate to Encina WPCF

Benefits

- No new distribution system
- Utilize recycled water yearround

- Regulatory
- Public acceptance
- DPR lacks environmental buffer (long-term option only)

DIRECT POTABLE REUSE OPTION: REGIONAL DPR AT ENCINA

Overview

Regional program

Region: 32 MGD

VWD: 9.4 MGD (10,500 AFY)

DPR to Twin Oaks WTP

Benefits

- Better economy of scale (\$/af??)
- No new treatment plant

Challenges

- Regulatory (10+ year)
- Public acceptance
- Longer transmission line

FINDINGS AND RECOMMENDATIONS

AVOIDED COSTS

Typical Costs

Avoided/deferred water supply CIPs

Reduced imported water supply purchase costs

Avoided/deferred wastewater disposal CIPs

Reduced wastewater disposal operations costs

Vallecitos Water District

None

\$1,255/AFY

None (Still need outfall as failsafe)

Minor (costs offset by brineconcentrate when using RO)

RECYCLED WATER ALTERNATIVES SUMMARY

Alternatives	Total Water Produced (AFY)	Capital Cost ¹ (\$)	Gross Water Cost ² (\$/AF)	Adjusted Unit Cost ³ (\$/AF)
Non-Potable R	leuse			
NPR-Local	215	\$ 19,000,000	\$ 6,500	\$5,900
NPR-Max	994	\$ 154,000,000	\$ 10,100	\$9,200
Indirect Potab	le Reuse			
IPR-GW	3,360	\$ 356,000,000	\$ 8,400	\$7,700
IPR-SWA	165	\$ 33,000,000	\$ 14,500	\$13,400
Direct Potable	Reuse			
DPR-AWT-1	1,344	\$ 107,000,000	\$ 5,700	\$5,200
DPR-AWT-2	5,825	\$ 343,000,000	\$ 4,500	\$4,100
DPR-Encina	10,529	\$ 215,000,000	\$ 1,900	\$1,700

Notes

Current Imported (SDCWA) Costs: \$1255 per AF

- 1) Capital costs include construction, implementation (soft) costs (45%), and contingencies (30%)
- 2) Gross Water Cost includes O&M cost and assumed financing of 30 yr and 3% interest ammoniz
- 3) Adjusted unit costs include potential grant funding (10%) and potential LRP funding (\$100/AF).

RECYCLED WATER ALTERNATIVES SUMMARY

Alternatives	Key Challenges	Relative Challenges (H/M/L)	Potential Timeframe
Non-Potable Reuse			
NPR-Local	Cost-effectiveness	Low	Short
NPR-Max	Cost-effectiveness, Avail. of supply	Med	5 to 10 years
Indirect Potable Reuse			
IPR-GW	Size/cost, Uncertainty	High	N/a
IPR-SWA	Size/cost, Regulations	High	10+ years
Direct Potable Reuse			
DPR-AWT-1	Size/cost, no current regulations	High	10+ years
DPR-AWT-2	Size/cost, no current regulations	High	10+ years
DPR-Encina	No current regulations	High	10+ years

FINDINGS

- Evaluated many possibilities
- Major asset for VWD: wastewater available in future
- Major challenges:
 - VWD lacks typical "resources" that drive solutions
 - Limited wastewater supplies currently
 - Lakes and groundwater: small with a lot of hurdles
- All these options are doable but require a lot of steps and cost to get there
- Aim is to set up a pathway based what could confront or provide opportunities to VWD in the future
 - Desalination
 - Local contracts
 - Regulatory environment
 - Cost of water

RECOMMENDED TOP OPTIONS

- Short-term strategy: Non-potable reuse
 - Implement small-local reuse based on available flow
 - Get VWD into reuse retail business.
 - Maintains future flexibility for:
 - Expanding NPR as supply/funding available
 - Keeping IPR/DPR in play for long-term
 - Runoff/stormwater capture could enhance supplies
 - Part of North San Diego Regional goals

RECOMMENDED TOP OPTIONS

- Long-term strategy: Potable Reuse Opportunities
 - VWD lacks key resources for single agency project:
 - Groundwater is a major challenge
 - Surface water options not viable currently
 - Continue to engage in regional plans/options:
 - North San Diego Regional study
 - Encina Potable Reuse
 - Monitor State regulations for DPR